4 research outputs found

    An Alternative Variational Framework for Image Denoising

    Get PDF
    We propose an alternative framework for total variation based image denoising models. The model is based on the minimization of the total variation with a functional coefficient, where, in this case, the functional coefficient is a function of the magnitude of image gradient. We determine the considerations to bear on the choice of the functional coefficient. With the use of an example functional, we demonstrate the effectiveness of a model chosen based on the proposed consideration. In addition, for the illustrative model, we prove the existence and uniqueness of the minimizer of the variational problem. The existence and uniqueness of the solution associated evolution equation are also established. Experimental results are included to demonstrate the effectiveness of the selected model in image restoration over the traditional methods of Perona-Malik (PM), total variation (TV), and the D-α-PM method

    A Total Variation Model Based on the Strictly Convex Modification for Image Denoising

    No full text
    We propose a strictly convex functional in which the regular term consists of the total variation term and an adaptive logarithm based convex modification term. We prove the existence and uniqueness of the minimizer for the proposed variational problem. The existence, uniqueness, and long-time behavior of the solution of the associated evolution system is also established. Finally, we present experimental results to illustrate the effectiveness of the model in noise reduction, and a comparison is made in relation to the more classical methods of the traditional total variation (TV), the Perona-Malik (PM), and the more recent D-α-PM method. Additional distinction from the other methods is that the parameters, for manual manipulation, in the proposed algorithm are reduced to basically only one

    A Total Variation Model Based on the Strictly Convex Modification for Image Denoising

    Get PDF
    We propose a strictly convex functional in which the regular term consists of the total variation term and an adaptive logarithm based convex modification term. We prove the existence and uniqueness of the minimizer for the proposed variational problem. The existence, uniqueness, and long-time behavior of the solution of the associated evolution system is also established. Finally, we present experimental results to illustrate the effectiveness of the model in noise reduction, and a comparison is made in relation to the more classical methods of the traditional total variation (TV), the Perona-Malik (PM), and the more recent D-α-PM method. Additional distinction from the other methods is that the parameters, for manual manipulation, in the proposed algorithm are reduced to basically only one
    corecore